Traceability
Ontological Approach for the Semantic Recovery of Traceability Links between Software Artifacts

Abstract
Traceability links provide support for software engineers in understanding relations and dependencies among software artefacts created during the software development process. The authors focus on re-establishing traceability links between existing source code and documentation to support software maintenance. They present a novel approach that addresses this issue by creating formal ontological representations for both documentation and source code artefacts. Their approach recovers traceability links at the semantic level, utilising structural and semantic information found in various software artefacts. These linked ontologies are supported by ontology reasoners to allow the inference of implicit relations among these software artefacts.
Traceability in Software Engineering - Past, Present and Future
CASCON 2007 Workshop Report
IBM Technical Report: TR-74-211
October 25, 2007
Abstract
Many changes have occurred in software engineering research and practice since 1968, when software engineering as a research domain was established. One of these research areas is traceability, a key aspect of any engineering discipline, enables engineers to understand the relations and dependencies among various artifacts in a system.
An Ontology-based Approach for the Recovery of Traceability Links
Abstract
Traceability links provide support for software engineers in understanding the relations and dependencies among software artifacts created during the software development process. In this research, we focus on re-establishing traceability links between existing source code and documentation to support reverse engineering. We present a novel approach that addresses this issue by creating formal ontological representations for both the documentation and source code artifacts.
Automatic Traceability Recovery: An Ontological Approach
Abstract
Software maintainers routinely have to deal with a multitude of artifacts, like source code or documents. These artifacts often end up disconnected from each other, due to their different representations and levels of abstractions. One of the main challenges in software maintenance therefore is to recover and maintain the semantic connections among these artifacts. In this research, we present a novel approach that addresses this traceability issue by creating formal ontological representations for both software documentation and source code artifacts. The resulting representations are then aligned to establish traceability links at semantic level. Ontological queries and reasoning can be applied on these representations to infer and establish additional traceability links to support specific maintenance tasks.
Categories and Subject Descriptors: D2.7 [Distribution, Maintenance, and Enhancement]: Documentation, Restructuring, reverse engineering
General Terms: Software, Documentation, Management
Keywords: Ontologies, Traceability, Software Maintenance
Text Mining and Software Engineering: An Integrated Source Code and Document Analysis Approach

Abstract
Documents written in natural languages constitute a major part of the artifacts produced during the software engineering lifecycle. Especially during software maintenance or reverse engineering, semantic information conveyed in these documents can provide important knowledge for the software engineer. In this paper, we present a text mining system capable of populating a software ontology with information detected in documents. A particular novelty is the integration of results from automated source code analysis into an NLP pipeline, allowing to cross-link software artifacts represented in code and natural language on a semantic level.
Ontological Text Mining of Software Documents

Abstract
Documents written in natural languages constitute a major part of the software engineering lifecycle artifacts. Especially during software maintenance or reverse engineering, semantic information conveyed in these documents can provide important knowledge for the software engineer. In this paper, we present a text mining system capable of populating a software ontology with information detected in documents.
